Calculation of extruded insulation and protective layer materials
2020-09-25
1、 Circular extrusion type:
1. Insulation layer:
(1) Weight of single wire extruded insulation layer
Diameter D0=D+2t mm
Section F=π (d+t) t mm2
Weight W=π (d+t) t * r (kg/km)
Weight of N single wire extruded insulation layers:
W=π(d+t)t*r*N*K (kg/km)
(2) Stranded wire (or bundle wire) core edge gap without filling, extruded insulation layer weight:
1) Squeezing W=[π (D+t) t+Q1] r * N * K (kg/km)
2) Longitudinal package W=[π (D+t) t+4/5 * Q1] r * N * K (kg/km)
(3) Weight of extruded insulation layer for composite stranded wire (bundle stranded wire) core:
Weight W=[π (D+t) t+Q1+Q2] r * N * K (kg/km)
Among them: D0, D - diameter of single or stranded wire (bundle wire), composite stranded wire (bundle wire) mm
T - Insulation thickness mm r - Specific gravity of the material used g/cm3
N - Number of insulated wire cores K - Cable stranding coefficient
Q1- Stranded wire (or bundle wire) edge gap area mm2
Q2- Edge gap area of composite stranded wire (or bundle stranded wire) mm2
The calculation of the core edge gap area Q1 of the stranded wire (or bundle wire) is shown in Table 11
Q1=Z*π/4*d2{(2K2-Z-2/2Z)-[K(K-2)]1/2/π} mm2
Among them: d - Single wire diameter mm K - Strand outer diameter ratio (see Tables 4, N)
Z - Number of outermost single wires
Stranded wire (or bundle wire) core edge gap area Q1

The calculation of the edge gap area Q2 of the stranded wire of the composite cable is shown in Table 12
Q2=2/3*A*Z*d12
Among them: A-strand wire is 1.33 for 7 strands, and 2.54 for 19 strands
Z-Number of outermost strands
D1- Single line diameter mm
Edge gap area of stranded wire Q2

(4) Calculation of weight for other forms of insulation layer:
1) Weight of fish bubble insulation layer
W=π(D-t)t*r*N*K kg/km
Among them: D - outer diameter of fish bubble tube mm
R - Specific gravity of fish bubble tube material, g/cm3
T - thickness of fish bubble tube mm
N - Number of coaxial pairs used in a cable
K - Coaxial pair stranding coefficient during cable stranding
2) Weight of gasket type insulation layer
W=G/P*103+G/103
Among them: G - gasket weight kg/km P - distance between gaskets mm
2. Protective layer
(1) Calculation of weight with filler and wrapped protective layer:
W=π(D+t)t*r kg/km
(2) Calculation of the weight of unfilled and non wrapped protective layers:
W=[π(D+t)t+Q*K]r kg/km
Among them: D - diameter before sheath mm t - sheath thickness mm
R - Specific gravity of the material used, g/cm3
K-cable stranding coefficient, refer to Table 7
Q - Side gap area mm2 d - Insulation core diameter mm
The edge gap area Q of insulated wire cores with the same cross-section when forming cables

2) Calculation of the weight of the protective layer for multi-core cables with different core cross-sections:
1. Two major and one minor:
Cable diameter D=Ad1 mm
Edge gap area S1=a π/4 * d12 mm2
S2=bπ/4*d12 mm2
Middle gap S3=c π/4 * d12 mm2
Weight of protective layer W=[π (D+t) t+( δ 1+2 δ 2)K]r(kg/km)
2. Three major and one minor
Cable diameter D=A * d1 mm
Edge gap area δ 1=a*π/4* d12 mm2
δ 2=b*π/4* d12 mm2
Intermediate gap δ 3=c*π/4* d12 mm2
Weight of protective layer W=[π (D+t) t+2( δ 1+ δ 2)K]r (kg/km)
Among them: D - cable diameter mm r - specific gravity of the material used g/cm3
S1、、 δ 1、 δ 2- Edge gap area mm2
S3、 δ 3- Center void area mm2
D1- diameter of large circular insulated wire core mm
D2- Diameter of small circular insulated wire core mm
A. A, b, and c can be found in the corresponding curves of two major and one minor, and three major and one minor
K - Cable stranding coefficient, can be found in Table 7
Three major and one minor options available
D=1.91d1+0.502d2
δ 1=0.45 d12-0.145d22
δ 2=0.045 d12+0.26 d22
δ 3=0.02 d12+0.2 d22
δ Total=0.99 d12+0.23 d22
W=[π(D+t)t+ δ Total] r (kg/km)
δ Total - filling area mm2
(3) Calculation of the weight of metal textile post extrusion and gap protection layer:
W=π(D+t)[t+(1-P%)2d]r(kg/km)
Among them: D - diameter after spinning mm t - thickness of protective layer mm
P% - Textile density 1-P% - Void area percentage
D - Diameter of metal wire mm 2d - Approximate height of gap mm
R - Specific gravity of the material used, g/cm3
(1) Calculation of outer diameter D1 of wrinkled aluminum package:
D1=D+2t+wrinkle constant mm
Wrinkle constant table

Wrinkle aluminum package weight W=π (D+Wrinkle constant+t) t * K * r (kg/km)
Among them: D - diameter before aluminum cladding mm t - thickness of aluminum cladding mm
R - Specific gravity of aluminum g/cm3 K - Wrinkle compression coefficient of 1.005
2、 Fan extrusion type:
(1) Calculation of the weight of two parallel cores with wrapped protective layers
W=[π(D0+2t0+t)+2D0]t*r (kg/km)
(2) Calculation of the weight of two parallel cores with filled and wrapped protective layers
W=[π(D0+2t0+t)+2D0] t*r (kg/km)
(3) Calculation of the weight of a two core parallel unfilled non wrapped protective layer
1) Parallel embedded:
W=[π(D0+t)t+(D0+2t)D0-π/4D02]
=(3.14t2+5.14D0t+0.215D02)r (kg/km)
2) Figure 8
W=2 [π (D0+t) t-F bow] r (kg/km)
Fbow=t (19t+16D0) [(D0+t) t] 1/2 mm2
12(D0+t)
(4) Calculation of the weight of the casing protective layer:
W=[π(D0+t)+2D0]t*r (kg/km)
(5) Calculation of the weight of the three core parallel protective layer:
1) Embedded
W=[π(D0+t)t+2D02+4D0t-π/2*D02]r
=[3.14t2+7.14D0t-0.43D02]r (kg/km)
2) Package style:
W=[π(D0+2t0+t)t+4D0t]r (kg/km)
Among them: D0- Insulation core diameter mm t - Sheath thickness mm
T0- Thickness of the tape layer mm r - Specific gravity of the material used g/cm3
(6) Calculation of the weight of the elliptical protective layer:
W=π/2(a+b+2t)t*r (kg/km)
Among them: a - Height of the inner wall in front of the sheath mm
B - Width of the inner wall in front of the sheath mm
T - Sheath thickness mm
R - Specific gravity of the material used, g/cm3
Related news
■